Hall Ticket Number:

Code No. : 13606 O3

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (IT) II Year I-Semester Old Examinations, May/June-2018

Digital Electronics and Logic Design

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Implement the Boolean function F=A(CD+B)+BC' using NAND gates.
- 2. Write VHDL Program for implementing XOR operation.
- 3. Give any two differences between PLAs and PALs.
- 4. Implement an Half adder circuit.
- 5. Convert D flip-flop to T flip-flop using excitation tables.
- 6. Give the truth tables and excitation tables of SR and JK flip flops.
- 7. Differentiate between Mealy and Moore state models.
- 8. List two differences between synchronous sequential circuits and asynchronous sequential circuits.
- 9. Differentiate between static and dynamic hazards.
- 10. Define set up and hold time of a flip-flop.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11.	a)	Minimize and implement $f(x_1, x_2, x_3) = \sum m(1,3,4,7)$ using only NOR gates.	[8]
	b)	Write short notes on TTL 74 series gates.	[2]
12.	a)	Design a 4 input priority encoder.	[5]
	b)	Explain Arithmetic comparison circuits.	[5]
13.	a)	Design a 3 bit binary counter using T Flip flop.	[5]
	b)	Explain JK flip-flop with neat circuit diagram and timing diagram.	[5]
14.	a)	Design a sequential circuit with two D flip flops A and B and one input x. When $x = 0$, the state of the circuit remains the same. When $x=1$, the circuit goes through the state transitions from 00 to 01 to 11 to 10 and back to 00 and repeats.	[8]
	b)	Write short notes on CAD tools.	[2]
15.	a)	Explain digital hardware design flow.	[5]
	b)	Explain the different types of hazards in combinational circuits.	[5]
16.	a)	Implement f $(x_1, x_2, x_3) = \sum m (1, 2, 4, 7)$ (i) using 2:1 multiplexers only and (ii) using 4:1 multiplexers only.	[7]
	b)) Explain the significance of number system.	[3]
17.	A	nswer any <i>two</i> of the following:	
		Master-slave edge triggered flip-flops.	[5]
) FSM as an arbiter circuit.	[5]
	C	ASM charts.	[5]